با همکاری مشترک دانشگاه پیام نور و انجمن علمی ارتقاء کتابخانه‌های عمومی ایران

نوع مقاله : Review Article,

نویسندگان

1 دانشجوی دکتری، گروه علم اطلاعات و دانش‌شناسی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 دانشجوی دکتری، گروه کتابداری و اطلاع‌رسانی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران.

3 گروه فنی مهندسی، دانشگاه غیرانتفاعی پویش قم، قم، ایران.

چکیده

پژوهش حاضر با هدف تغییر مأموریت کتابخانه‌های عمومی از «مؤسسات امانت‌دهی کتاب» به «مراکز اجتماعی» و ارائۀ خدمات هوشمند شخصی‌سازی‌شده به کاربران، با کاربست روش‌های داده‌کاوی می‌باشد. پژوهش حاضر، با هدف شناسایی کاربردهای داده‌کاوی در ابعاد مختلف شامل تحلیل خدمات، تحلیل کیفیت، تحلیل مجموعه و تحلیل کاربرد و نیز تعیین توابع و تکنیک‌های مختلف داده‌کاوی در کتابخانه‌های عمومی، انجام شده است. روش پژوهش از نوع مرور دامنه‌ای بوده و از گام‌های چارچوب روش‌شناختی آرکسی و امالی (2005) پیروی می‌کند. با استفاده از نرم‌افزار مدیریت منابع اطلاعاتی اندنوت، 32 مقاله تکراری و 395 مقاله در نتیجه (عدم) تطبیق با هدف یا معیارهای ورود و خروج پژوهش، از تعداد کل 438 مطالعه حذف گردید. یازده مقاله اصلی به زبان انگلیسی و دو مقاله اصلی مرتبط نیز به زبان فارسی نهایی شده و در نهایت 13 مقاله به مطالعه راه یافت. مطابق یافته‌های پژوهش، ابزارهای داده‌کاوی در کتابخانه‌های عمومی در حوزه‌های مدیریت، خدمات مرجع، سازمان‌دهی، ذخیره و بازیابی، اطلاع‌رسانی، بازاریابی، بودجه و مجموعه‌سازی قابل بهره‌برداری است. با توجه به نتایج به دست آمده ضرورت داده‌کاوی در کتابخانه‌های عمومی به‌عنوان یک ابزار مهم جهت شناسایی نقاط ضعف و قوت کتابخانه، بهبود فرایندهای مدیریتی و ارتقای عملکرد و ارتقای خدمات کتابخانه مطابق با نیازهای کاربران، بهینه‌سازی منابع و شناسایی نیازهای کاربران متنوع، شناخته می‌شود. تحقیق حاضر به‌عنوان نقطه شروعی برای محققان آینده برای کاوش عمیق‌تر در این موضوع عمل می‌کند تا متناسب با نیازهای خاص خود بتوانند از توابع و تکنیک‌های مناسب داده‌کاوی جهت اهداف ارزیابی در کتابخانه‌های عمومی بهره گیرند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analyzing the Applications of Data Mining in Public Libraries: A Scoping Review

نویسندگان [English]

  • faeze sadat tabatabai amiri 1
  • Somaye Dehghanisanij 2
  • Mahdieh Sadat Fakhari 3

1 Ph.D. Candidate, Department of Knowledge and Information Science, Shahid Chamran University, Ahvaz, Iran.

2 Ph.D. Candidate, Department of Medical Library and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.

3 Department of Technical Engineering, Non-Profit pooyesh University of Qom, Qom, Iran.

چکیده [English]

The present research with the aim change the mission of public libraries from "book lending institutions" to "social centers" and provide personalized intelligent services to users by applying data mining methods. The current research has been carried out with the aim of identifying the applications of data mining in public libraries with regard to different dimensions, including service analysis, quality analysis, collection analysis and application analysis, as well as determining the functions and techniques of data mining. The search algorithm for this scoping review is designed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart following the steps of the methodological framework of Arksey & O'Malley. Using Endnote, as the information resources management software, 32 duplicate articles and 395 articles as a result of (non)compliance with the purpose or inclusion and exclusion criteria of the research were removed from the total number of 438 studies. Ten main articles in English and two related main articles in Persian were finalized and finally 13 articles have been selected. The application of data mining in public libraries is very wide and can be used as a powerful tool in the fields of management, reference services, organization, storage and retrieval, information, marketing, budget and collection building. In general, the findings of the current research indicate that the subject of data mining applications in providing services and functions of public libraries has received little attention in researches. Data mining of users' data, makes it possible to identify the resources and topics with the highest demand and, as a result, prepare a set of desirable books and resources for delivery to users. Therefore, by recognizing the needs and preferences of users, it is possible to prioritize library information resources and improve the services provided to users, including the borrowing process, fast and effective search system, personalization and customized provision of services, and the entire process of communicating with users. As a result, the necessity of data mining in public libraries is recognized as an important tool for identifying the library's strengths and weaknesses, improving management processes and improving the performance and upgrading of library services consistent with the needs of users, optimizing resources and identifying the needs of diverse users. The current research debuts a point for future researchers to use appropriate data mining functions and techniques for evaluation purposes in public libraries according to their specific needs.

کلیدواژه‌ها [English]

  • Data Mining
  • Intelligent
  • Library 4.0
  • Public Library
  • Big Data
Anna, N.E.V., & Mannan, E.F. (2020). Big data adoption in academic libraries: a literature review, Library Hi Tech News, 37(4), 1-5. https://doi.org/10.1108/LHTN-11-2019-0079
Banerjee, K. (1998). Is data mining right for your library? Computers in Libraries, 18(10), 28-31.
Çakmak, T., & Eroğlu, Ş., (2020). User Interaction and Content Categorization in Social Media: Analysis of Facebook Posts of Public Libraries in Ankara. Turkish Librarianship, 34(2),160-186.
Cao, J. (2022). Cloud Computing-Based Online Sharing Method of Mass Resources in Public Libraries. Mobile Information Systems, 2022. DOI: 10.1155/2022/8925897
Ebrahimi R, & Haseli D. (2018). Factors effecting delays in returning borrowed items in public libraries. Research on Information Science and Public Libraries, 24(1),191-205. (In Persian)
Hajek, P., & Stejskal, J. (2014). Library user behavior analysis–use in economics and management. WSEAS Transactions on Business and Economics, 11(1), 107-116.
Hajek, P., & Stejskal, J. (2017). Library usage mining in the context of alternative costs: the case of the municipal library of Prague, Library Hi Tech, 35(4), 565-583. https://doi.org/10.1108/LHT-01-2017-0019
Jiang, S., & Yang, X. (2022). Analysis of the Influence of Library Information on the Utilization of Regional Environmental and Ecological Resources: From the Perspective of Intelligent Adaptive Learning. Journal of Environmental and Public Health, https://doi.org/10.1155/2022/1110105
Joo, S., Ingram, E., & Cahill, M. (2021). Exploring Topics and Genres in Storytime Books: A Text Mining Approach. Evidence Based Library and Information Practice, 16(4), 41-62. https://doi.org/10.18438/eblip29963
Khademizadeh, S., & Mohammadi, Z. A. (2022). Systematic Review of Data Mining Applications in Digital Libraries. Human Information Interaction, 9(2), 12-24. (In Persian)
Lin, G., & Miao, A. (2022, April). Construction of Library Personalized Intelligent Service System Based on Data Mining. In Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers, 857-862. https://doi.org/10.1145/3544109.3544368
Liu, F., Zhang, Q. (2021). A New Reciprocal Teaching Approach for Information Literacy Education under the Background of Big Data. International Journal of Emerging Technologies in Learning (iJET), 16(03), 246-260. https://doi.org/10.3991/ijet.v16i03.20459
Mahwasane, N.P., & Mudzielwana, N.P. (2016). Challenges of Students in Accessing Information in the Library: A Brief Review. Journal of Communication, 7(2), 216-221. https://doi.org/10.1080/0976691x.2016.11884900
Mozafari, A., Ziaei, S., & Mozafari, A. (2014). Segmentation of public library patrons based on their lifetime value and RFM model by combining multi-criteria decision making and data mining methods. Library and Information Science Studies, 7(16), 19-38. (In Persian)
Noh, Y. (2015). Imagining Library 4.0: Creating a model for future libraries. Journal of Academic Librarianship, 41(6), 786-797. DOI:10.1016/j.acalib.2015.08.020.
Shiri, A., & Rathi, R. (2013). Twitter Content Categorisation: A Public Library Perspective, Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., 12(04), 1-8. DOI: 10.1142/S0219649213500354
Siguenza-Guzman, L., Van Den Abbeele, A., Vandewalle, J., Verhaaren, H., & Cattrysse, D. (2015). A holistic approach to supporting academic libraries in resource allocation processes. The Library Quarterly: Information, Community, Policy, 85(3), 295-318.
Xiang, Z., & Hao, Z. (2014). Personalized Requirements oriented data mining and implementation for college libraries. Computer Modelling & New Technologies, 18(2B), 293-300.
Yang, Y.T., & Shieh, J.C. (2019). Target Marketing Public Libraries’ Vital Readers: Before. In: Wilimowska, Z., Borzemski, L., Świątek, J. (eds) Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018. ISAT 2018. Advances in Intelligent Systems and Computing, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-99993-7_19
Zhan, M., Tu, R., & Yu, Q. (2018). Understanding Readers: Conducting Sentiment Analysis of Instagram Captions. International Conference on Computer Science and Artificial Intelligence. https://doi.org/10.1145/3297156.3297270
Zou, H., Chen, H.M., & Dey, Sh. (2015). Exploring user engagement strategies and their impacts with social media mining: the case of public libraries. Journal of Management Analytics2(4), 295-313.