با همکاری مشترک دانشگاه پیام نور و انجمن علمی ارتقاء کتابخانه‌های عمومی ایران

نویسندگان

1 دکتری، گروه علم اطلاعات و دانش‌شناسی، مرکز تحقیقات عوامل اجتماعی مؤثر سلامت، دانشگاه علوم پزشکی گناباد، گناباد، ایران.

2 دانشیار، گروه علم اطلاعات و دانش‌شناسی، دانشگاه پیام نور، تهران، ایران.

3 استادیار، گروه علم اطلاعات و دانش‌شناسی، دانشگاه پیام نور، تهران، ایران.

چکیده

پژوهش حاضر به شناسایی روندهای نوظهور در مقالات کتابداری و اطلاع‌رسانی پزشکی منتشر شده در مجلات علمی- پژوهشی ایرانی پرداخته است. مطالعه اکتشافی حاضر به تجزیه و تحلیل مقالات کتابداری و اطلاع‌رسانی پزشکی در مجلات این حوزه در ایران از سال 1376 تا 1398 با استفاده از فنون متن کاوی پرداخته است. جهت شناسایی مهم‌ترین واژگان به ‌کار رفته در مقالات از الگوریتم TF-IDF استفاده ‌شده است. زبان برنامه‌نویسی پایتون نیز جهت اجرای الگوریتم‌های متن‌کاوی به کار گرفته ‌شده است. بررسی واژگان نوظهور در مقالات منتشر شده در مجلات کتابداری و اطلاع‌رسانی پزشکی نشان می‌دهد که واژگان لیب کوال، عملی، بابلیوتراپی در بازه زمانی 1384 تا 1394 به‌تازگی وارد مقالات و مطالعات حوزه کتابداری و اطلاع‌رسانی پزشکی در مجلات داخلی شده است. همچنین واژگان اختراع، آلتمتریک، مخزن، بازه زمانی 1394 تا 1399 به‌تازگی وارد مقالات و مطالعات حوزه کتابداری و اطلاع‌رسانی پزشکی در مجلات داخلی شده است. نتایج نشان‌دهنده آن است که واژگان مقالات کتابداری و اطلاع‌رسانی پزشکی در طول زمان ثابت نبوده و در بازه‌های زمانی مختلف، دچار تغییراتی شده است. این امر نشان‌دهنده آن است که همگام با ظهور و رشد فناوری، این رشته علمی نیز تغییر یافته است.

کلیدواژه‌ها

عنوان مقاله [English]

Detecting emerging Trends in Articles on Iranian Medical librarianship and Information Using the TFIDF Algorithm

نویسندگان [English]

  • Meisam Dastani 1
  • Soraya Ziaei 2
  • Faeze Delghandi 3

1 Ph.D, Determinants of Knowledge and Information Science, Social Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.

2 Associate Professor, Department of Knowledge & Information Science, Payame Noor University, Tehran, Iran.

3 Assistant Professor, Department of Knowledge & Information Science, Payame Noor University, Tehran, Iran.

چکیده [English]

The present study identifies emerging trends in medical library and information science articles published in Iranian scientific-research journals. This exploratory research analyzes medical library and information science articles published in this field’s journals in Iran from 1997 to 2020 using text mining techniques. The TF-IDF algorithm was employed to identify the most important terms used in the articles. Python programming language was utilized to implement the text mining algorithms. The examination of emerging terms in articles published in medical library and information science journals indicates that terms such as LibQUAL, practical, and bibliotherapy have recently entered the articles and studies of this field in domestic journals during the period from 2005 to 2015. Similarly, terms like invention, altmetrics, and repository have recently appeared in the articles and studies of this field in domestic journals during the period from 2015 to 2020. The results indicate that the terms used in medical library and information science articles have not remained constant over time and have undergone changes during different periods. This reflects that, in line with the emergence and growth of technology, this scientific field has also evolved.

کلیدواژه‌ها [English]

  • Library and Information Science
  • Medicine
  • Analysis
  • Keywords
  • Text Mining
  • Iran
Abe, H., & Tsumoto, S. (2012). Detection of research trends from bibliographical data. International Journal of Data Mining, Modelling and Management4(3), 255-266. Doi: 10.1504/IJDMMM.2012.048107
Abuhay, T. M., Kovalchuk, S. V., Bochenina, K. O., Kampis, G., Krzhizhanovskaya, V. V., & Lees, M. H. (2017). Analysis of computational science papers from ICCS 2001-2016 using topic modeling and graph theory. arXiv preprint arXiv:1705.02203. Doi: 10.1016/j.procs.2017.05.183
Ashrafi-Rizi, H.,   Hodhodinezhad, N.,   Shahrzadi, L., & Soleymani M.R. (2017).   A Study on the Novel Services of Medical Librarians in Health Information. Journal of Health Information Management, 13(3), 438-444. (In Persian)
Behkami, N. A., & U. Daim, T. (2012). Research Forecasting for Health Information Technology (HIT), using technology intelligence. Technological Forecasting and Social Change, 79(3), 498-508. Doi: 10.1016/j.techfore.2011.08.015
Boudry, C. (2015). Web 2.0 applications in medicine: trends and topics in the literature. Medicine 2.0, 4(1).
Chang, Y.-W., Huang, M.-H., & Lin, C.-W. (2015). Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses. Scientometrics, 105(3), 2071-2087.
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. Doi:10.1002/asi.20317
Choi, Sungchul, Janghyeok Yoon, Kwangsoo Kim, Jae Yeol Lee, and Cheol-Han Kim. "Sao Network Analysis of Patents for Technology Trends Identification: A Case Study of Polymer Electrolyte Membrane Technology in Proton Exchange Membrane Fuel Cells." Scientometrics 88, no. 3 (2011/06/12 2011): 863.
Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M. X., & Qu, H. (2010). Context preserving dynamic word cloud visualization. Paper presented at the 2010 IEEE Pacific Visualization Symposium (PacificVis).
DePaolo, C. A., & Wilkinson, K. (2014). Get your head into the clouds: Using word clouds for analyzing qualitative assessment data. TechTrends, 58(3), 38-44.
 Emami, M., Riahinia, N., & Soheili, F. (2020). Mapping the Scientific Structure of Medical and Laboratory Equipment with Using the Co-occurrence Analysis, Scientometric Research Journal, 6(11), 41-56. (In Persian)  Doi: 10.22070/rsci.2018.696
Figuerola, C. G., García Marco, F. J., & Pinto, M. (2017). Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA. Scientometrics, 112(3), 1507-1535. Doi: 10.1007/s11192-017-2432-9
Frakes, W. B., & Baeza-Yates, R. (1992). Information retrieval: data structures and algorithms. Prentice-Hall, Inc.
Funk, M. E. (2013). Our words, our story: a textual analysis of articles published in the Bulletin of the Medical Library Association/Journal of the Medical Library Association from 1961 to 2010. Journal of the Medical Library Association: JMLA, 101(1), 12. Doi: 10.3163/1536-5050.101.1.003.
Gavgani, V. Z., & Mohan, V. V. (2008). Application of web 2.0 tools in medical librarianship to support medicine 2.0. Webology, 5(1).
 Hashimi, H., Hafez, A., & Mathkour, H. (2015). Selection criteria for text mining approaches. Computers in Human Behavior, 51, 729-733. https://doi.org/10.1016/j.chb.2014.10.062
Hastie, T., Tibshirani, R., & Friedman, J. (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media.
Hung, J.-L., & Zhang, K. J. J. o. C. i. H. e. (2012). Examining mobile learning trends 2003–2008: A categorical meta-trend analysis using text mining techniques. 24(1), 1-17. Doi: 10.1007/s12528-011-9044-9
Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics, 13(6), 395.
Kao, A., & Poteet, S. R. (2007). Natural Language Processing and Text Mining. Springer Science & Business Media.
Kim, M. J., Ohk, K., & Moon, C. S. (2017). Trend Analysis by Using Text Mining of Journal Articles Regarding Consumer Policy. New Physics: Sae Mulli, 67(5), 555-561. Doi:10.3938/NPSM.67.555
Kim, Y.-M., & Delen, D. (2018). Medical informatics research trend analysis: A text mining approach. Health informatics journal, 24(4), 432-452.
Lamba, M., & Madhusudhan, M. (2019). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics
Lamba, M., & Madhusudhan, M. (2019). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics120(2), 477-505.Doi: 10.1007/s11192-019-03137-5
Le, M. H., Ho, T. B., & Nakamori, Y. (2005). Detecting emerging trends from scientific corpora. International Journal of Knowledge and Systems Sciences, 2(2), 53-59.
Lee, S., Lee, S., Seol, H., Park, Y. J. R., & Management, d. (2008). Using patent information for designing new product and technology: keywordbased technology roadmapping. 38(2), 169-188. https://doi.org/10.1111/j.1467-9310.2008.00509.
Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and its Applications, 450, 657-669. https://doi.org/10.1016/j.physa.2016.01.017
Miner, G. (2012). Practical text mining and statistical analysis for non-structured text data applications. Academic Press.
Mostafavi, I., Osareh, F., & Tavakkolizadeh Ravari, M. (2017). Analysis on the Structure of KIS Scientific Words and Concepts Based on Social Network Analysis in the Web of Science Database (1993-1997 and 2009-2013), Research on Information Scienc & Public Libraries, 23(89), 237-264. (In Persian) Dor: 20.1001.1.26455730.1396.23.2.6.6
Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.  https://doi.org/10.1108/eb046814
Rajman, M., & Besançon, R. (1998). Text mining-knowledge extraction from unstructured textual data. In Advances in data science and classification (pp. 473-480): Springer.
Rebholz-Schuhmann, D., Oellrich, A., & Hoehndorf, R. (2012). Text-mining solutions for biomedical research: enabling integrative biology. Nature Reviews Genetics, 13(12), 829.
Rehurek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. Paper presented at the In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks.
Rodriguez-Esteban, R., & Bundschus, M. (2016). Text mining patents for biomedical knowledge. Drug discovery today, 21(6), 997-1002. https://doi.org/10.1016/j.drudis.2016.05.002
Sahoo, S., & Bhui, T. (2018). Trend of Public library research in India: a bibliometric study. Library Philosophy & Practice.
Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining techniques for extracting information from research articles. In Intelligent Natural Language Processing: Trends and Applications (pp. 373-397): Springer.
Soheili, F., Khasseh, A.A., & Koranian, P. (2019). Mapping Intellectual Structure of Knowledge and Information Science in Iran based on Co-word Analysis. Journal of Information Processing and Management, 34(4), 1905-1938. (In Persian) Doi: 10.35050/JIPM010.2019.026
Soleimani Nezhad, A., Salajegheh, M., & Tayyebi Nia, E. (2019). Clustering scientific articles based on the k_means algorithmCase Study: Iranian Research Institute for information Science and Technology (IranDoc), Journal of Information Processing and Management, 34(2), 871-896. (In Persian) Doi: 10.35050/JIPM010.2019.060
Su, H.-N., & Lee, P.-C. (2010). Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight. Scientometrics, 85(1), 65-79. Doi: 10.1007/s11192-010-0259-8
Wang, M. Y., Fang, S. C., & Chang, Y. H. (2015). Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels. Technological Forecasting and Social Change, 92, 182-195. Doi: 10.1016/j.techfore.2014.07.008
Wartena, C., Brussee, R., & Slakhorst, W. (2010, August). Keyword extraction using word co-occurrence. In 2010 workshops on database and expert systems applications (pp. 54-58). IEEE.
Wu, C.-C. (2016). Constructing a weighted keyword-based patent network approach to identify technological trends and evolution in a field of green energy: a case of biofuels. Quality & Quantity, 50(1), 213-235. Doi: 10.1007/s11135-014-0145-1
Xu, M., Li, G., & Wang, X. (2020). Detecting emerging topics by exploiting probability burst and association rule mining: A case study of Library and Information Science. Malaysian Journal of Library and Information Science, 25(1), 47-66. Doi: 10.22452/mjlis.vol25no1.3
Zhang, Y., Chen, M., & Liu, L. (2015, September). A review on text mining. In 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS) (pp. 681-685). IEEE.